본문 바로가기
Tensorflow

Numpy

by 설화님 2023. 12. 26.

리스트 끼리 곱

import numpy as np
x_input=np.array([1,2,3,4,5,6,7,8,9,10],dtype = np.float32)
labels = np.array([3,5,7,9,11,13,15,17,19,21],dtype = np.float32) #
W,B = np.random.normal(size=1,), np.random.normal(size=1,)
def Hypothesis(x):
    return W*x +B
def Cost() :
    return np.mean((Hypothesis(x_input)-labels)**2)
def Gradient(x,y):
    return np.mean(x*(x+W+(B-y))), np.mean((W*x -y +B))
epochs = 5000
learning_rate = 0.005
for cnt in range(0, epochs+1) :
    if cnt % (epochs//20) ==0:
        print("[{}]cost={},W={}, B={}".format(cnt,Cost(),W,B))
    grad_W, grad_B = Gradient(x_input,labels)
    W -= learning_rate * grad_W
    B -= learning_rate * grad_B

 

함수 보면 가능. 

 

 

'Tensorflow' 카테고리의 다른 글

Multi variable Linear Regression (Numpy)  (1) 2023.12.27
Tf Linear regression (1차)  (0) 2023.12.27
keras 경사하강 기초.  (0) 2023.12.26
경사하강법  (0) 2023.12.26
TypeError: integer argument expected, got float  (0) 2023.12.26