import tensorflow as tf
mnist = tf.keras.datasets.mnist
(x_train, y_train) , (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test /255.0
model = tf.kearas.models.Sequential([
tf.keras.layers.Flatten(input_shape(28,28)),
tf.keras.layers.Dense(128, activation = 'relu')
tf.keras.layers.Dense(10, activation = 'softmax')
])
model.compile(optimizer = 'adam',
loss = sparse_categorical_crossentropy',
metrics = ['accuracy])
model.fit(x_train, y_train, epochs =5)
model.evaluate(x_test, y_test)
'Tensorflow' 카테고리의 다른 글
[Tensorflow] Subclassing API (0) | 2024.01.11 |
---|---|
[Tensorflow] Function API (0) | 2024.01.11 |
[Tensorflow] 변수 variable 설명 (0) | 2024.01.11 |
[Tensorflow] Tensor 설명 (0) | 2024.01.04 |
Tensorflow 기본 (1) | 2024.01.03 |